domingo, 26 de enero de 2014

Dirección ip

Dirección IP

Una dirección IP es una etiqueta numérica que identifica, de manera lógica y jerárquica, a un interfaz (elemento de comunicación/conexión) de un dispositivo (habitualmente una computadora) dentro de unared que utilice el protocolo IP (Internet Protocol), que corresponde al nivel de red del Modelo OSI. Dicho número no se ha de confundir con la dirección MAC, que es un identificador de 48 bits para identificar de forma única la tarjeta de red y no depende del protocolo de conexión utilizado ni de la red. La dirección IP puede cambiar muy a menudo por cambios en la red o porque el dispositivo encargado dentro de la red de asignar las direcciones IP decida asignar otra IP (por ejemplo, con el protocolo DHCP). A esta forma de asignación de dirección IP se denomina también dirección IP dinámica (normalmente abreviado como IP dinámica).
Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados generalmente tienen una dirección IP fija (comúnmente, IP fija o IP estática). Esta no cambia con el tiempo. Los servidores de correo, DNS, FTP públicos y servidores de páginas web necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se permite su localización en la red.
Las computadoras se conectan entre sí mediante sus respectivas direcciones IP. Sin embargo, a los seres humanos nos es más cómodo utilizar otra notación más fácil de recordar, como los nombres de dominio; la traducción entre unos y otros se resuelve mediante los servidores de nombres de dominio DNS, que a su vez facilita el trabajo en caso de cambio de dirección IP, ya que basta con actualizar la información en el servidor DNS y el resto de las personas no se enterarán, ya que seguirán accediendo por el nombre de dominio.

Direcciones IPv4

Las direcciones IPv4 se expresan por un número binario de 32 bits, permitiendo un espacio de direcciones de hasta 4.294.967.296 (232) direcciones posibles. Las direcciones IP se pueden expresar como números de notación decimal: se dividen los 32 bits de la dirección en cuatro octetos. El valor decimal de cada octeto está comprendido en el rango de 0 a 255 [el número binario de 8 bits más alto es 11111111 y esos bits, de derecha a izquierda, tienen valores decimales de 1, 2, 4, 8, 16, 32, 64 y 128, lo que suma 255].
En la expresión de direcciones IPv4 en decimal se separa cada octeto por un carácter único ".". Cada uno de estos octetos puede estar comprendido entre 0 y 255.
  • Ejemplo de representación de dirección IPv4: 10.128.1.255
En las primeras etapas del desarrollo del Protocolo de Internet,1 los administradores de Internet interpretaban las direcciones IP en dos partes, los primeros 8 bits para designar la dirección de red y el resto para individualizar la computadora dentro de la red.
Este método pronto probó ser inadecuado, cuando se comenzaron a agregar nuevas redes a las ya asignadas. En 1981 el direccionamiento internet fue revisado y se introdujo la arquitectura de clases. (classful network architecture).2
En esta arquitectura hay tres clases de direcciones IP que una organización puede recibir de parte de la Internet Corporation for Assigned Names and Numbers (ICANN): clase A, clase B y clase C.3
  • En una red de clase A, se asigna el primer octeto para identificar la red, reservando los tres últimos octetos (24 bits) para que sean asignados a los hosts, de modo que la cantidad máxima de hosts es 224- 2 (se excluyen la dirección reservada para broadcast (últimos octetos en 255) y de red (últimos octetos en 0)), es decir, 16 777 214 hosts.
  • En una red de clase B, se asignan los dos primeros octetos para identificar la red, reservando los dos octetos finales (16 bits) para que sean asignados a los hosts, de modo que la cantidad máxima de hosts por cada red es 216 - 2, o 65 534 hosts.
  • En una red de clase C, se asignan los tres primeros octetos para identificar la red, reservando el octeto final (8 bits) para que sea asignado a los hosts, de modo que la cantidad máxima de hosts por cada red es 28 - 2, o 254 hosts.
ClaseRangoN° de RedesN° de Host Por RedMáscara de RedBroadcast ID
A0.0.0.0 - 127.255.255.25512816 777 214255.0.0.0x.255.255.255
B128.0.0.0 - 191.255.255.25516 38465 534255.255.0.0x.x.255.255
C192.0.0.0 - 223.255.255.2552 097 152254255.255.255.0x.x.x.255
(D)224.0.0.0 - 239.255.255.255histórico   
(E)240.0.0.0 - 255.255.255.255histórico   
  • La dirección 0.0.0.0 es reservada por la IANA para identificación local.
  • La dirección que tiene los bits de host iguales a cero sirve para definir la red en la que se ubica. Se denomina dirección de red.
  • La dirección que tiene los bits correspondientes a host iguales a 255, sirve para enviar paquetes a todos los hosts de la red en la que se ubica. Se denomina dirección de broadcast.
  • Las direcciones 127.x.x.x se reservan para designar la propia máquina. Se denomina dirección de bucle local o loopback.
El diseño de redes de clases (classful) sirvió durante la expansión de internet, sin embargo este diseño no era escalable y frente a una gran expansión de las redes en la década de los noventa, el sistema de espacio de direcciones de clases fue reemplazado por una arquitectura de redes sin clases Classless Inter-Domain Routing (CIDR)4 en el año 1993. CIDR está basada en redes de longitud de máscara de subred variable (variable-length subnet masking VLSM) que permite asignar redes de longitud de prefijo arbitrario. Permitiendo una distribución de direcciones más fina y granulada, calculando las direcciones necesarias y "desperdiciando" las mínimas posibles.

Direcciones privadas

Existen ciertas direcciones en cada clase de dirección IP que no están asignadas y que se denominan direcciones privadas. Las direcciones privadas pueden ser utilizadas por los hosts que usan traducción de dirección de red (NAT) para conectarse a una red pública o por los hosts que no se conectan a Internet. En una misma red no pueden existir dos direcciones iguales, pero sí se pueden repetir en dos redes privadas que no tengan conexión entre sí o que se conecten mediante el protocolo NAT. Las direcciones privadas son:
  • Clase A: 10.0.0.0 a 10.255.255.255 (8 bits red, 24 bits hosts).
  • Clase B: 172.16.0.0 a 172.31.255.255 (12 bits red, 20 bits hosts). 16 redes clase B contiguas, uso en universidades y grandes compañías.
  • Clase C: 192.168.0.0 a 192.168.255.255 (16 bits red, 16 bits hosts). 256 redes clase C continuas, uso de compañías medias y pequeñas además de pequeños proveedores de internet (ISP).
Muchas aplicaciones requieren conectividad dentro de una sola red, y no necesitan conectividad externa. En las redes de gran tamaño a menudo se usa TCP/IP. Por ejemplo, los bancos pueden utilizar TCP/IPpara conectar los cajeros automáticos que no se conectan a la red pública, de manera que las direcciones privadas son ideales para estas circunstancias. Las direcciones privadas también se pueden utilizar en una red en la que no hay suficientes direcciones públicas disponibles.
Las direcciones privadas se pueden utilizar junto con un servidor de traducción de direcciones de red (NAT) para suministrar conectividad a todos los hosts de una red que tiene relativamente pocas direcciones públicas disponibles. Según lo acordado, cualquier tráfico que posea una dirección destino dentro de uno de los intervalos de direcciones privadas no se enrutará a través de Internet.

Máscara de subred

La máscara permite distinguir los bits que identifican la red y los que identifican el host de una dirección IP. Dada la dirección de clase A 10.2.1.2 sabemos que pertenece a la red 10.0.0.0 y el host al que se refiere es el 2.1.2 dentro de la misma. La máscara se forma poniendo a 1 los bits que identifican la red y a 0 los bits que identifican el host. De esta forma una dirección de clase A tendrá como máscara 255.0.0.0, una de clase B 255.255.0.0 y una de clase C 255.255.255.0. Los dispositivos de red realizan un AND entre la dirección IP y la máscara para obtener la dirección de red a la que pertenece el host identificado por la dirección IP dada. Por ejemplo un router necesita saber cuál es la red a la que pertenece la dirección IP del datagrama destino para poder consultar la tabla de encaminamiento y poder enviar el datagrama por la interfaz de salida. Para esto se necesita tener cables directos. La máscara también puede ser representada de la siguiente forma 10.2.1.2/8 donde el /8 indica que los 8 bits más significativos de máscara están destinados a redes, es decir /8 = 255.0.0.0. Análogamente (/16 = 255.255.0.0) y (/24 = 255.255.255.0).

Creación de subredes

El espacio de direcciones de una red puede ser subdividido a su vez creando subredes autónomas separadas. Un ejemplo de uso es cuando necesitamos agrupar todos los empleados pertenecientes a un departamento de una empresa. En este caso crearíamos una subred que englobara las direcciones IP de éstos. Para conseguirlo hay que reservar bits del campo host para identificar la subred estableciendo a uno los bits de red-subred en la máscara. Por ejemplo la dirección 172.16.1.1 con máscara 255.255.255.0 nos indica que los dos primeros octetos identifican la red (por ser una dirección de clase B), el tercer octeto identifica la subred (a 1 los bits en la máscara) y el cuarto identifica el host (a 0 los bits correspondientes dentro de la máscara). Hay dos direcciones de cada subred que quedan reservadas: aquella que identifica la subred (campo host a 0) y la dirección para realizar broadcast en la subred (todos los bits del campo host en 1).

IP dinámica[editar · editar código]

Una dirección IP dinámica es una IP asignada mediante un servidor DHCP (Dynamic Host Configuration Protocol) al usuario. La IP que se obtiene tiene una duración máxima determinada. El servidor DHCP provee parámetros de configuración específicos para cada cliente que desee participar en la red IP. Entre estos parámetros se encuentra la dirección IP del cliente.
DHCP apareció como protocolo estándar en octubre de 1993. El estándar RFC 2131 especifica la última definición de DHCP (marzo de 1997). DHCP sustituye al protocolo BOOTP, que es más antiguo. Debido a la compatibilidad retroactiva de DHCP, muy pocas redes continúan usando BOOTP puro.
Las IP dinámicas son las que actualmente ofrecen la mayoría de operadores. El servidor del servicio DHCP puede ser configurado para que renueve las direcciones asignadas cada tiempo determinado.

Ventajas

  • Reduce los costos de operación a los proveedores de servicios de Internet (ISP).
  • Reduce la cantidad de IP asignadas (de forma fija) inactivas.

Desventajas

  • Obliga a depender de servicios que redirigen un host a una IP.

Asignación de direcciones IP

Dependiendo de la implementación concreta, el servidor DHCP tiene tres métodos para asignar las direcciones IP:
  • manualmente, cuando el servidor tiene a su disposición una tabla que empareja direcciones MAC con direcciones IP, creada manualmente por el administrador de la red. Sólo clientes con una dirección MAC válida recibirán una dirección IP del servidor.
  • automáticamente, donde el servidor DHCP asigna por un tiempo pre-establecido ya por el administrador una dirección IP libre, tomada de un rango prefijado también por el administrador, a cualquier cliente que solicite una.
  • dinámicamente, el único método que permite la re-utilización de direcciones IP. El administrador de la red asigna un rango de direcciones IP para el DHCP y cada ordenador cliente de la LAN tiene su software de comunicación TCP/IP configurado para solicitar una dirección IP del servidor DHCP cuando su tarjeta de interfaz de red se inicie. El proceso es transparente para el usuario y tiene un periodo de validez limitado.

IP fija

Una dirección IP fija es una dirección IP asignada por el usuario de manera manual (Que en algunos casos el ISP o servidor de la red no lo permite), o por el servidor de la red (ISP en el caso de internet, router o switch en caso de LAN) con base en la Dirección MAC del cliente. Mucha gente confunde IP Fija con IP Pública e IP Dinámica con IP Privada.
Una IP puede ser Privada ya sea dinámica o fija como puede ser IP Pública Dinámica o Fija.
Una IP pública se utiliza generalmente para montar servidores en internet y necesariamente se desea que la IP no cambie por eso siempre la IP Pública se la configura de manera Fija y no Dinámica, aunque si se podría.
En el caso de la IP Privada generalmente es dinámica asignada por un servidor DHCP, pero en algunos casos se configura IP Privada Fija para poder controlar el acceso a internet o a la red local, otorgando ciertos privilegios dependiendo del número de IP que tenemos, si esta cambiara (fuera dinámica) sería más complicado controlar estos privilegios (pero no imposible).

Direcciones IPv6

La función de la dirección IPv6 es exactamente la misma que la de su predecesor IPv4, pero dentro del protocolo IPv6. Está compuesta por 128 bits y se expresa en una notación hexadecimal de 32 dígitos. IPv6 permite actualmente que cada persona en la Tierra tenga asignados varios millones de IPs, ya que puede implementarse con 2128 (3.4×1038 hosts direccionables). La ventaja con respecto a la dirección IPv4 es obvia en cuanto a su capacidad de direccionamiento.
Su representación suele ser hexadecimal y para la separación de cada par de octetos se emplea el símbolo ":". Un bloque abarca desde 0000 hasta FFFF. Algunas reglas de notación acerca de la representación de direcciones IPv6 son:
  • Los ceros iniciales se pueden obviar.
Ejemplo: 2001:0123:0004:00ab:0cde:3403:0001:0063 -> 2001:123:4:ab:cde:3403:1:63
  • Los bloques contiguos de ceros se pueden comprimir empleando "::". Esta operación sólo se puede hacer una vez.
Ejemplo: 2001:0:0:0:0:0:0:4 -> 2001::4.
Ejemplo no válido: 2001:0:0:0:2:0:0:1 -> 2001::2::1 (debería ser 2001::2:0:0:1 o 2001:0:0:0:2::1).

dirección MAC

Qué es una dirección MAC:

Anteriormente en esta sección, ya he hablado de lo que es una dirección IP; en este caso hablaré de lo que es una dirección MAC, que en contra de lo que se pueda pensar, no es sólo para ordenadores con el sistema operativo Macintosh, sino para cualquier ordenador conectado en red.
Las tarjetas de red tipo Ethernet tienen una pequeña memoria en la que alojan un dato único para cada tarjeta de este tipo. Se trata de la dirección MAC, y está formada por 48 bits que se suelen representar mediante dígitos hexadecimales que se agrupan en seis parejas (cada pareja se separa de otra mediante dos puntos ":" o mediante guiones "-"). Por ejemplo, una dirección MAC podría ser F0:E1:D2:C3:B4:A5.
MAC son las siglas de Media Access Control y se refiere al control de acceso al medio físico. O sea que la dirección MAC es una dirección física (también llamada dirección hardware), porque identifica físicamente a un elemento del hardware: insisto en que cada tarjeta Ethernet viene de fábrica con un número MAC distinto. Windows la menciona como Dirección del adaptador. Esto es lo que finalmente permite las transmisiones de datos entre ordenadores de la red, puesto que cada ordenador es reconocido mediante esa dirección MAC, de forma inequívoca.
La mitad de los bits de la dirección MAC son usados para identificar al fabricante de la tarjeta, y los otros 24 bits son utilizados para diferenciar cada una de las tarjetas producidas por ese fabricante.
Casi todas las redes de hoy día (y concretamente Internet) utilizan el protocolo IP, que usa otro sistema de direcciones no relacionadas con el hardware. Las direcciones IP responden a un sistema de convencionalismos más abstractos. Cuando un software quiere enviar datos a otro ordenador, normalmente sabe la dirección IP del ordenador destinatario, pero no sabe realmente cómo hacerle llegar los datos (físicamente). Hay otro protocolo llamado ARP (Protocolo de Resolución de Direcciones) que es el encargado de averiguar la dirección MAC correspondiente a una dirección IP, y así se pueden enviar físicamente los datos desde un ordenador a otro. No hay relación alguna entre la dirección IP y la dirección MAC, pero el protocolo ARP y la red cuentan con mecanismos para averiguar en cualquier momento cuál es esa correspondencia.
¿Que pasa si no tenemos tarjeta de red y conectamos por módem? Pues en ese caso no se usa la dirección MAC ni tampoco funciona el protocolo ARP. La conexión por módem funciona mediante otro protocolo llamadoPPP (Point to Point Protocol, protocolo de punto a punto), que actúa como enlace directo entre los dos ordenadores conectados por medio de la línea telefónica. A todos los efectos (visto desde el resto de Internet), nuestro ordenador tiene la misma dirección MAC que el servidor con el que enlazamos mediante módem. Pero hay que tener en cuenta que si tenemos instalada una tarjeta de red, la dirección MAC de esa tarjeta puede resultar visible desde Internet, incluso aunque conectemos por módem y sin usar la tarjeta de red.
¿Cómo puedo saber cuál es mi dirección MAC?:
  • En Windows, tenemos que dirigirnos a Inicio-> Ejecutar, y escribir un comando y luego pulsar en Aceptar. Entonces aparecerá nuestra dirección MAC en el apartado Dirección de adaptador. El comando en cuestión es:
    • winipcfg, si nuestro Sistema Operativo es Windows 95/98/Me.
    • ipconfig, si es Windows NT/2.000.
  • Para Macintosh, (Mac OS 8.5 y 9) sería Menú Apple-> Paneles de Control-> TCP/IP. Aquí ya nos aparece la dirección IP, pero para ver la dirección MAC tenemos que ir a Archivo, elegir Obtener Información, y aparecerá en el apartado Dirección del Hardware.
  • UNIX (Solaris) y Linux, el comando a usar es dmesg | grep Ethernet (en este caso la dirección IP se obtiene con el comando ifconfig "interface").

proyecto final



viernes, 13 de diciembre de 2013

Componentes básicos de las redes

Componentes básicos de las redes

Para poder formar una red se requieren elementos: hardware, software y protocolos. Los elementos físicos se clasifican en dos grandes grupos: dispositivos de usuario final (hosts) y dispositivos de red. Los dispositivos de usuario final incluyen los computadores, impresoras, escáneres, y demás elementos que brindan servicios directamente al usuario y los segundos son todos aquellos que conectan entre sí a los dispositivos de usuario final, posibilitando su intercomunicación.
El fin de una red es la de interconectar los componentes hardware de una red , y por tanto, principalmente, las computadoras individuales, también denominados hosts, a los equipos que ponen los servicios en la red, los servidores, utilizando el cableado o tecnología inalámbrica soportada por la electrónica de red y unidos por cableado o radiofrecuencia. En todos los casos la tarjeta de red se puede considerar el elemento primordial, sea ésta parte de un ordenador, de un conmutador, de una impresora, etc. y sea de la tecnología que sea (ethernet, Wi-Fi, Bluetooth, etc.)

Software

Sistema operativo de red: permite la interconexión de ordenadores para poder acceder a los servicios y recursos. Al igual que un equipo no puede trabajar sin un sistema operativo, una red de equipos no puede funcionar sin un sistema operativo de red. En muchos casos el sistema operativo de red es parte del sistema operativo de los servidores y de los clientes, por ejemplo en Linux y Microsoft Windows.
Software de aplicación: en última instancia, todos los elementos se utilizan para que el usuario de cada estación, pueda utilizar sus programas y archivos específicos. Este software puede ser tan amplio como se necesite ya que puede incluir procesadores de texto, paquetes integrados, sistemas administrativos de contabilidad y áreas afines, sistemas especializados, correos electrónico, etc. El software adecuado en el sistema operativo de red elegido y con los protocolos necesarios permiten crear servidores para aquellos servicios que se necesiten.

Hardware

Tarjeta de red

Para lograr el enlace entre las computadoras y los medios de transmisión (cables de red o medios físicos para redes alámbricas e infrarrojos o radiofrecuencias para redes inalámbricas), es necesaria la intervención de una tarjeta de red, o NIC (Network Card Interface), con la cual se puedan enviar y recibir paquetes de datos desde y hacia otras computadoras, empleando un protocolo para su comunicación y convirtiendo a esos datos a un formato que pueda ser transmitido por el medio (bits, ceros y unos). Cabe señalar que a cada tarjeta de red le es asignado un identificador único por su fabricante, conocido como dirección MAC (Media Access Control), que consta de 48 bits (6 bytes). Dicho identificador permite direccionar el tráfico de datos de la red del emisor al receptor adecuado.
El trabajo del adaptador de red es el de convertir las señales eléctricas que viajan por el cable (ej: red Ethernet) o las ondas de radio (ej: red Wi-Fi) en una señal que pueda interpretar el ordenador.
Estos adaptadores son unas tarjetas PCI que se conectan en las ranuras de expansión del ordenador. En el caso de ordenadores portátiles, estas tarjetas vienen en formato PCMCIA o similares. En los ordenadores del siglo XXI, tanto de sobremesa como portátiles, estas tarjetas ya vienen integradas en la placa base.
Adaptador de red es el nombre genérico que reciben los dispositivos encargados de realizar dicha conversión. Esto significa que estos adaptadores pueden ser tanto Ethernet, como wireless, así como de otros tipos como fibra óptica, coaxial, etc. También las velocidades disponibles varían según el tipo de adaptador; éstas pueden ser, en Ethernet, de 10, 100, 1000 Mbps o 10000, y en los inalámbricos, principalmente, de 11, 54, 300 Mbps.

Dispositivos de usuario final

  • Computadoras personales: son los puestos de trabajo habituales de las redes. Dentro de la categoría de computadoras, y más concretamente computadoras personales, se engloban todos los que se utilizan para distintas funciones, según el trabajo que realizan. Se incluyen desde las potentes estaciones de trabajo para la edición de vídeo, por ejemplo, hasta los ligeros equipos portátiles, conocidos como netbooks, cuya función principal es la de navegar por Internet. Las tabletas se popularizaron al final de la primera década del siglo XXI, especialmente por el éxito del iPad de Apple.
  • Terminal: muchas redes utilizan este tipo de equipo en lugar de puestos de trabajo para la entrada de datos. En estos sólo se exhiben datos o se introducen. Este tipo de terminales, trabajan unido a un servidor, que es quien realmente procesa los datos y envía pantallas de datos a los terminales.
  • Impresoras: muchos de estos dispositivos son capaces de actuar como parte de una red de ordenadores sin ningún otro elemento, tal como un print server, actuando como intermediario entre la impresora y el dispositivo que está solicitando un trabajo de impresión de ser terminado. Los medios de conectividad de estos dispositivos pueden ser alambricos o inalámbricos, dentro de este último puede ser mediante: ethernet, Wi-Fi, infrarrojo o bluetooth. En algunos casos se integran dentro de la impresora y en otros por medio de convertidores externos.
  • Otros elementos: escáneres, lectores de CD-ROM,

Servidores

Son los equipos que ponen a disposición de los clientes los distintos servicios. En la siguiente lista hay algunos tipos comunes de servidores y sus propósitos:
  • Servidor de archivos: almacena varios tipos de archivo y los distribuye a otros clientes en la red. Pueden ser servidos en distinto formato según el servicio que presten y el medio: FTP, SMB, etc.
  • Servidor de impresión: controla una o más impresoras y acepta trabajos de impresión de otros clientes de la red, poniendo en cola los trabajos de impresión (aunque también puede cambiar la prioridad de las diferentes impresiones), y realizando la mayoría o todas las otras funciones que en un sitio de trabajo se realizaría para lograr una tarea de impresión si la impresora fuera conectada directamente con el puerto de impresora del sitio de trabajo.
  • Servidor de correo: almacena, envía, recibe, enruta y realiza otras operaciones relacionadas con el e-mail para los clientes de la red.
  • Servidor de fax: almacena, envía, recibe, enruta y realiza otras funciones necesarias para la transmisión, la recepción y la distribución apropiadas de los fax, con origen y/o destino una computadora o un dispositivo físico de telefax.
  • Servidor de telefonía: realiza funciones relacionadas con la telefonía, como es la de contestador automático, realizando las funciones de un sistema interactivo para la respuesta de la voz, almacenando los mensajes de voz, encaminando las llamadas y controlando también la red o Internet, etc. Pueden operan con telefonía IP o analógica.
  • Servidor proxy: realiza un cierto tipo de funciones en nombre de otros clientes en la red para aumentar el funcionamiento de ciertas operaciones (p. ej., prefetching y depositar documentos u otros datos que se soliciten muy frecuentemente). También «sirve» seguridad; esto es, tiene un firewall (cortafuegos). Permite administrar el acceso a Internet en una red de computadoras permitiendo o negando el acceso a diferentes sitios web, basándose en contenidos, origen/destino, usuario, horario, etc.
  • Servidor de acceso remoto (RAS, del inglés Remote Access Service): controla las líneas de módems u otros canales de comunicación de la red para que las peticiones conecten una posición remota con la red, responden las llamadas telefónicas entrantes o reconocen la petición de la red y realizan los chequeos necesarios de seguridad y otros procedimientos necesarios para registrar a un usuario en la red. Gestionan las entradas para establecer la redes virtuales privadas, VPN.
  • Servidor web: almacena documentos HTML, imágenes, archivos de texto, escrituras, y demás material web compuesto por datos (conocidos normalmente como contenido), y distribuye este contenido a clientes que la piden en la red.
  • Servidor de streaming: servidores que distribuyen multimedia de forma continua evitando al usuario esperar a la descarga completa del fichero. De esta forma se pueden distribuir contenidos tipo radio, vídeo, etc. en tiempo real y sin demoras.
  • Servidor de reserva, o standby server: tiene el software de reserva de la red instalado y tiene cantidades grandes de almacenamiento de la red en discos duros u otras formas del almacenamiento disponibles para que se utilice con el fin de asegurarse de que la pérdida de un servidor principal no afecte a la red. El servidor de reserva lo puede ser de cualquiera de los otros tipos de servidor, siendo muy habituales en los servidores de aplicaciones y bases de datos.
  • Servidor de autenticación: es el encargado de verificar que un usuario pueda conectarse a la red en cualquier punto de acceso, ya sea inalámbrico o por cable, basándose en el estándar 802.1x y puede ser un servidor de tipo RADIUS.
  • Servidores para los servicios de red: estos equipos gestionan aquellos servicios necesarios propios de la red y sin los cuales no se podrían interconectar, al menos de forma sencilla. Algunos de esos servicios son: servicio de directorio para la gestión d elos usuarios y los recursos compartidos, Dynamic Host Configuration Protocol (DHCP) para la asignación de las direcciones IP en redes TCP/IP, Domain Name System (DNS) para poder nombrar los equipos sin tener que recurrir a su dirección IP numérica, etc.
  • Servidor de base de datos: permite almacenar la información que utilizan las aplicaciones de todo tipo, guardándola ordenada y clasificada y que puede ser recuperada en cualquier momento y en base a una consulta concreta. Estos servidores suelen utilizar lenguajes estandarízados para hacer más fácil y reutilizable la programación de aplicaciones, uno de los más populares es SQL.
  • Servidor de aplicaciones: ejecuta ciertas aplicaciones. Usualmente se trata de un dispositivo de software que proporciona servicios de aplicación a las computadoras cliente. Un servidor de aplicaciones gestiona la mayor parte (o la totalidad) de las funciones de lógica de negocio y de acceso a los datos de la aplicación. Los principales beneficios de la aplicación de la tecnología de servidores de aplicación son la centralización y la disminución de la complejidad en el desarrollo de aplicaciones.
  • Servidores de monitorización y gestión: ayudan a simplificar las tareas de control, monitorización, búsqueda de averías, resolución de incidencias, etc. Permiten, por ejemplo, centralizar la recepción de mensajes de aviso, alarma e información que emiten los distintos elementos de red (no solo los propios servidores). El SNMP es un de los protocolos más difundidos y que permite comunicar elementos de distintos fabricantes y de distinta naturaleza.
  • Y otros muchos dedicados a múltiples tareas, desde muy generales a aquellos de una especifidad enorme.

Almacenamiento en red

En la redes medianas y grandes el almacenamiento de datos principal no se produce en los propios servidores sino que se utilizan dispositivos externos, conocidos como disk arrays (matrices de discos) interconectados, normalmente por redes tipo SAN, o NAS. Estos medios permiten centralizar la información, una mejor gestión del espacio, sistemas redundantes y de alta disponibilidad.
Los medios de copia de seguridad suelen incluirse en la misma red donde se alojan los medios de almacenamiento mencionados más arriba, de esta forma el traslado de datos entre ambos, tanto al hacer la copia como las posibles restauraciones, se producen dentro de esta red sin afectar al tráfico de los clientes con los servidores o entre ellos.

Dispositivos de red

Los equipos informáticos descritos necesitan de una determinada tecnología que forme la red en cuestión. Según las necesidades se deben seleccionar los elementos adecuados para poder completar el sistema. Por ejemplo, si queremos unir los equipos de una oficina entre ellos debemos conectarlos por medio de un conmutador o un concentrador, si además hay un varios portátiles con tarjetas de red Wi-Fi debemos conectar un punto de acceso inalámbrico para que recoja sus señales y pueda enviarles las que les correspondan, a su vez el punto de acceso estará conectado al conmutador por un cable. Si todos ellos deben disponer de acceso a Internet, se interconectaran por medio de un router, que podría ser ADSL, ethernet sobre fibra óptica, broadband, etc.
Los elementos de la electrónica de red más habituales son:

Protocolos de redes

Existen diversos protocolos, estándares y modelos que determinan el funcionamiento general de las redes. Destacan el modelo OSI y el TCP/IP. Cada modelo estructura el funcionamiento de una red de manera distinta. El modelo OSI cuenta con siete capas muy definidas y con funciones diferenciadas y el TCP/IP con cuatro capas diferenciadas pero que combinan las funciones existentes en las siete capas del modelo OSI.4 Los protocolos están repartidos por las diferentes capas pero no están definidos como parte del modelo en sí sino como entidades diferentes de normativas internacionales, de modo que el modelo OSI no puede ser considerado una arquitectura de red.5

Modelo OSI

El modelo OSI (Open Systems Interconnection) fue creado por la ISO y se encarga de la conexión entre sistemas abiertos, esto es, sistemas abiertos a la comunicación con otros sistemas. Los principios en los que basó su creación eran: una mayor definición de las funciones de cada capa, evitar agrupar funciones diferentes en la misma capa y una mayor simplificación en el funcionamiento del modelo en general.4
Este modelo divide las funciones de red en siete capas diferenciadas:
# Capa Unidad de intercambio
7. Aplicación APDU
6. Presentación PPDU
5. Sesión SPDU
4. Transporte TPDU
3. Red Paquete
2. Enlace Marco / Trama
1. Física Bit

Modelo TCP/IP

Este modelo es el implantado actualmente a nivel mundial: fue utilizado primeramente en ARPANET y es utilizado actualmente a nivel global en Internet y redes locales. Su nombre deriva de la unión del los nombres de los dos principales protocolos que lo conforman: TCP en la capa de transporte e IP en la capa de red.6 Se compone de cuatro capas:
# Capa Unidad de intercambio
4. Aplicación no definido
3. Transporte Paquete
2. Red / Interred no definido (Datagrama)
1. Enlace / nodo a red ??

Otros estándares

Existen otros estándares, más concretos, que definen el modo de funcionamiento de diversas tecnologías de transmisión de datos:
Esta lista muestra algunos ejemplos, no es completa.
Tecnología Estándar Año de primera publicación Otros detalles
Ethernet IEEE 802.3 1983 -
Token Ring IEEE 802.5 1970s7 -
WLAN IEEE 802.11 19978 -
Bluetooth IEEE 802.15 20029 -
FDDI ISO 9314-x 1987 Reúne un conjunto de estándares.
PPP RFC 1661 199410 -

Tipos de servidores

Servidores

Son los equipos que ponen a disposición de los clientes los distintos servicios. En la siguiente lista hay algunos tipos comunes de servidores y sus propósitos:
  • Servidor de archivos: almacena varios tipos de archivo y los distribuye a otros clientes en la red. Pueden ser servidos en distinto formato según el servicio que presten y el medio: FTP, SMB, etc.
  • Servidor de impresión: controla una o más impresoras y acepta trabajos de impresión de otros clientes de la red, poniendo en cola los trabajos de impresión (aunque también puede cambiar la prioridad de las diferentes impresiones), y realizando la mayoría o todas las otras funciones que en un sitio de trabajo se realizaría para lograr una tarea de impresión si la impresora fuera conectada directamente con el puerto de impresora del sitio de trabajo.
  • Servidor de correo: almacena, envía, recibe, enruta y realiza otras operaciones relacionadas con el e-mail para los clientes de la red.
  • Servidor de fax: almacena, envía, recibe, enruta y realiza otras funciones necesarias para la transmisión, la recepción y la distribución apropiadas de los fax, con origen y/o destino una computadora o un dispositivo físico de telefax.
  • Servidor de telefonía: realiza funciones relacionadas con la telefonía, como es la de contestador automático, realizando las funciones de un sistema interactivo para la respuesta de la voz, almacenando los mensajes de voz, encaminando las llamadas y controlando también la red o Internet, etc. Pueden operan con telefonía IP o analógica.
  • Servidor proxy: realiza un cierto tipo de funciones en nombre de otros clientes en la red para aumentar el funcionamiento de ciertas operaciones (p. ej., prefetching y depositar documentos u otros datos que se soliciten muy frecuentemente). También «sirve» seguridad; esto es, tiene un firewall (cortafuegos). Permite administrar el acceso a Internet en una red de computadoras permitiendo o negando el acceso a diferentes sitios web, basándose en contenidos, origen/destino, usuario, horario, etc.
  • Servidor de acceso remoto (RAS, del inglés Remote Access Service): controla las líneas de módems u otros canales de comunicación de la red para que las peticiones conecten una posición remota con la red, responden las llamadas telefónicas entrantes o reconocen la petición de la red y realizan los chequeos necesarios de seguridad y otros procedimientos necesarios para registrar a un usuario en la red. Gestionan las entradas para establecer la redes virtuales privadas, VPN.
  • Servidor web: almacena documentos HTML, imágenes, archivos de texto, escrituras, y demás material web compuesto por datos (conocidos normalmente como contenido), y distribuye este contenido a clientes que la piden en la red.
  • Servidor de streaming: servidores que distribuyen multimedia de forma continua evitando al usuario esperar a la descarga completa del fichero. De esta forma se pueden distribuir contenidos tipo radio, vídeo, etc. en tiempo real y sin demoras.
  • Servidor de reserva, o standby server: tiene el software de reserva de la red instalado y tiene cantidades grandes de almacenamiento de la red en discos duros u otras formas del almacenamiento disponibles para que se utilice con el fin de asegurarse de que la pérdida de un servidor principal no afecte a la red. El servidor de reserva lo puede ser de cualquiera de los otros tipos de servidor, siendo muy habituales en los servidores de aplicaciones y bases de datos.
  • Servidor de autenticación: es el encargado de verificar que un usuario pueda conectarse a la red en cualquier punto de acceso, ya sea inalámbrico o por cable, basándose en el estándar 802.1x y puede ser un servidor de tipo RADIUS.
  • Servidores para los servicios de red: estos equipos gestionan aquellos servicios necesarios propios de la red y sin los cuales no se podrían interconectar, al menos de forma sencilla. Algunos de esos servicios son: servicio de directorio para la gestión d elos usuarios y los recursos compartidos, Dynamic Host Configuration Protocol (DHCP) para la asignación de las direcciones IP en redes TCP/IP, Domain Name System (DNS) para poder nombrar los equipos sin tener que recurrir a su dirección IP numérica, etc.
  • Servidor de base de datos: permite almacenar la información que utilizan las aplicaciones de todo tipo, guardándola ordenada y clasificada y que puede ser recuperada en cualquier momento y en base a una consulta concreta. Estos servidores suelen utilizar lenguajes estandarízados para hacer más fácil y reutilizable la programación de aplicaciones, uno de los más populares es SQL.
  • Servidor de aplicaciones: ejecuta ciertas aplicaciones. Usualmente se trata de un dispositivo de software que proporciona servicios de aplicación a las computadoras cliente. Un servidor de aplicaciones gestiona la mayor parte (o la totalidad) de las funciones de lógica de negocio y de acceso a los datos de la aplicación. Los principales beneficios de la aplicación de la tecnología de servidores de aplicación son la centralización y la disminución de la complejidad en el desarrollo de aplicaciones.
  • Servidores de monitorización y gestión: ayudan a simplificar las tareas de control, monitorización, búsqueda de averías, resolución de incidencias, etc. Permiten, por ejemplo, centralizar la recepción de mensajes de aviso, alarma e información que emiten los distintos elementos de red (no solo los propios servidores). El SNMP es un de los protocolos más difundidos y que permite comunicar elementos de distintos fabricantes y de distinta naturaleza.
  • Y otros muchos dedicados a múltiples tareas, desde muy generales a aquellos de una especifidad enorme.

Clasificación de redes por: Relación funcional

Por relación funcional

  • Cliente-servidor es la arquitectura que consiste básicamente en un cliente que realiza peticiones a otro programa (el servidor) que le da respuesta.
  • Peer-to-peer, o red entre iguales, es aquella red de computadoras en la que todos o algunos aspectos funcionan sin clientes ni servidores fijos, sino una serie de nodos que se comportan como iguales entre sí.